Diabetes insipidus in uricase-deficient mice: a model for evaluating therapy with poly(ethylene glycol)-modified uricase.
نویسندگان
چکیده
Uricase-deficient mice develop uric acid nephropathy, with high mortality rates before weaning. Urate excretion was quantitated and renal function was better defined in this study, to facilitate the use of these mice as a model for evaluating poly(ethylene glycol)-modified recombinant mammalian uricases (PEG-uricase) as a potential therapy for gout and uric acid nephropathy. The uric acid/creatinine ratio in the urine of uricase-deficient mice ranges from 10 to >30; on a weight basis, these mice excrete 20- to 40-fold more urate than do human subjects. These mice consistently develop a severe defect in renal concentrating ability, resulting in an approximately sixfold greater urine volume and a fivefold greater fluid requirement, compared with normal mice. This nephrogenic diabetes insipidus leads to dehydration and death of nursing mice but, with adequate water replacement, high urine flow protects adults from progressive renal damage. Treatment of uricase-deficient mice with PEG-uricase markedly reduced urate levels and, when initiated before weaning, preserved the renal architecture (as evaluated by magnetic resonance micros-copy) and prevented the loss of renal concentrating function. PEG-uricase was far more effective and less immunogenic than unmodified uricase. Retention of uricase in most mammals and its loss in humans and some other primates may reflect the evolution of renal function under different environmental conditions. PEG-uricase could provide an effective therapy for uric acid nephropathy and refractory gout in human patients.
منابع مشابه
A new practical system for evaluating the pharmacological properties of uricase as a potential drug for hyperuricemia.
The use of uricase-deficient mammals to screen formulations of engineered uricases as potential drugs for hyperuricemia involves heavy costs and presents a technical bottleneck. Herein, a new practical system was investigated to evaluate the pharmacological significance of a bacterial uricase based on its ability to eliminate uric acid in plasma in vitro, its pharmacokinetics in vivo in healthy...
متن کاملEffects of modification of amino groups with poly(ethylene glycol) on a recombinant uricase from Bacillus fastidiosus.
After modification with monomethoxyl-poly(ethylene glycol)-5000, a recombinant intracellular uricase from Bacillus fastidiosus ATCC 29604 showed residual activity of about 65%, a thermo-inactivation half-life >85 h, a circulating half-life about 20 h in rats in vivo, consistent effects of common cations, and consistent optima for reaction temperature and pH. Thus, this uricase can be formulated...
متن کاملControl of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase
PEG-modified recombinant mammalian urate oxidase (PEG-uricase) is being developed as a treatment for patients with chronic gout who are intolerant of, or refractory to, available therapy for controlling hyperuricemia. In an open-label phase I trial, single subcutaneous injections of PEG-uricase (4 to 24 mg) were administered to 13 such subjects (11 had tophaceous gout), whose plasma uric acid c...
متن کاملUricases as therapeutic agents to treat refractory gout: Current states and future directions.
Treatment of refractory gout remains a challenge on drug development. While pegloticase, a recombinant mammalian uricase modified with monomethoxyl-poly(ethylene glycol) (mPEG) is effective in treating refractory gout, after continued treatment for three months biweekly at a therapeutic dose of 0.14 mg/kg body weight, it elicits an immune response against mPEG in nearly 20% of patients. For con...
متن کاملPEG-uricase in the management of treatment-resistant gout and hyperuricemia.
Hyperuricemia results from an imbalance between the rates of production and excretion of uric acid. Longstanding hyperuricemia can lead to gout, which is characterized by the deposition of monosodium urate monohydrate crystals in the joints and periarticular structures. Because such deposits are resolved very slowly by lowering plasma urate with available drugs or other measures, the symptoms o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Society of Nephrology : JASN
دوره 12 5 شماره
صفحات -
تاریخ انتشار 2001